
1. Introduction
Operational numerical weather prediction (NWP) models are inherently imperfect. Systematic errors result from 
approximations in deriving the governing equations, from their numerical implementation, and from conceptual 
and numerical errors in the parameterizations that represent subgrid scale physical and dynamical processes. 
Even small errors in any component of the NWP model can compound over time to produce errors that signifi-
cantly degrade the forecasting skill.

Systematic errors can be addressed with a wide range of approaches. One approach is to improve the model 
components—the dynamical core and subgrid scale physics parameterizations. The forecast system as a whole 
can be improved, say by adopting stochastic parameterizations that account for uncertainty, or by increasing 
spatial resolution. Model forecasts can also be further improved by an “offline” post-processing using statistical 
methods (e.g., Model Output Statistics) or machine learning (ML) methods applied to the model output after the 
completion of model forecast. However, the model errors may be convoluted over time and become more nonlin-
ear as forecast progresses, leading to errors that are more difficult to represent.

Abstract Weather forecasts made with imperfect models contain state-dependent errors. Data assimilation 
(DA) partially corrects these errors with new information from observations. As such, the corrections, or 
“analysis increments,” produced by the DA process embed information about model errors. An attempt is 
made here to extract that information to improve numerical weather prediction. Neural networks (NNs) are 
trained to predict corrections to the systematic error in the National Oceanic and Atmospheric Administration's 
FV3-GFS model based on a large set of analysis increments. A simple NN focusing on an atmospheric column 
significantly improves the estimated model error correction relative to a linear baseline. Leveraging large-scale 
horizontal flow conditions using a convolutional NN, when compared to the simple column-oriented NN, does 
not improve skill in correcting model error. The sensitivity of model error correction to forecast inputs is highly 
localized by vertical level and by meteorological variable, and the error characteristics vary across vertical 
levels. Once trained, the NNs are used to apply an online correction to the forecast during model integration. 
Improvements are evaluated both within a cycled DA system and across a collection of 10-day forecasts. It is 
found that applying state-dependent NN-predicted corrections to the model forecast improves the overall quality 
of DA and improves the 10-day forecast skill at all lead times.

Plain Language Summary Computer models used for operational weather prediction are not 
perfect—they are naturally only simplifications of the true atmosphere. Such imperfections result in reduced 
forecast quality. Weather forecast systems routinely correct the forecasts by pulling them closer to observations, 
thus providing some information about the errors present in the forecast model. Here, a neural network (NN) 
is trained to correct National Oceanic and Atmospheric Administration's operational weather forecast model, 
FV3-GFS, by “learning” the relation between the forecasts and the estimated model errors. The learned 
NN correction is then fed back into the weather model to improve the quality of the best guess state of the 
atmosphere and the subsequent 10-day forecasts. By analyzing how the NN output depends on its input forecast, 
we gain some insight about the model errors, which may be helpful for future atmospheric model development 
and improvements to future error-correcting NNs.
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To avoid such a complication, there is increasing interest in applying ML methods for “online” correction of the 
model forecast within the operational forecast-analysis cycle itself. Here an online correction, as opposed to an 
offline correction, is referred to as the methods that are integrated into the model forecast cycle such that the 
subsequent cycles benefit from previous improvements. The attraction of online correction is that, by reducing 
systematic errors, corrections can improve the forecasts (background state) provided to the data assimilation (DA) 
analysis algorithm, allowing the full-cycled DA system to make better use of the observations. As one example, 
Crawford et  al.  (2020) improved the 10-day forecast skill of the US Navy's NAVGEM model by applying a 
seasonal moving average of the analysis increment in their 1-year training data as a correction. The correction 
is fixed throughout different forecast lead-times and is independent of the meteorological conditions of the day. 
Fixed corrections limit the generalization of the method, as the correction may become invalid for longer forecast 
lead times or when applied during a year that has a different climate background environment due to interannual 
or decadal variability (e.g., ENSO). The storage required to maintain at least a full year of the seasonal moving 
averaged analysis increment data for the full 3D atmosphere is also a burden.

Bonavita and Laloyaux (2020), hereafter BL20, addressed some of these limitations by training a neural network 
(NN) to predict the analysis increments from the corresponding forecasts. Corrections were computed at low 
spatial resolution (smoothing to T21 by truncating higher wave number in spectral space) to accelerate training, 
and a column-based NN predicted analysis increments within the atmospheric column given the corresponding 
forecast and climatological variables including the time of the day, the month of the year, and the geo-location of 
the column. The NN correction was applied in conjunction with weak constraint 4D variational DA (4D-Var), as 
well as extending the original stratosphere-only correction to the troposphere. The validation period of the online 
correction together with 4D-Var was short due to resource limitations. A question that remains is whether it is 
possible to apply the NN correction online for medium-range operational forecasts.

Watt-Meyer et al. (2021) built on earlier work (e.g., Brenowitz & Bretherton, 2018, 2019) that used ML to repro-
duce a high-resolution reference data set from a lower-resolution input data set. They trained a random forest to 
correct a coarse C48 (∼200 km) resolution FV3-GFS model with 79 vertical levels. They generated the training 
data set by nudging the model toward the higher-resolution operational Global Forecasting System (GFS) anal-
yses. The random forest was trained to predict the nudging tendencies of the prognostic variables of a column 
from the corresponding column states. The random forest correction improved both the 10-day weather predic-
tion skill and the climatological variables (e.g., annually averaged precipitation) that were not directly updated 
by the correction. Recently, Bretherton et al. (2022) expanded the work on correcting the coarse C48 model by 
learning from a high-resolution reference simulation using a modified version of FV3-GFS with a 3 km grid. 
Both random forest and NN methods were examined in the study. This line of work focused on better representing 
the subgrid-scale processes of a coarse-resolution model, while we explore a similar approach in the context of 
operational NWP using a much higher resolution model.

Here, we apply ML methods to learn and correct systematic state-dependent model errors in National Oceanic 
and Atmospheric Administration's (NOAA's) FV3-GFS by comparison to an observationally informed atmos-
pheric analysis. This work aims to correct model errors online while generating a forecast and improve common 
weather prediction tasks. Corrections to model error are determined from increments generated by “replaying” 
(see Section  2.2) NOAA's FV3-GFS model to ECMWF IFS analysis. We generate three progressively more 
complex predictors for the systematic error: (a) a linear baseline similar to Crawford et al. (2020), (b) a 1D atmos-
pheric column-oriented ML predictor similar to BL20, and (c) an extension of the 1D ML predictor of the BL20 
that also includes horizontal information using convolutional neural networks (CNNs). We conduct a comprehen-
sive evaluation of the trained error predictors against each other using an offline set of analysis increments, in a 
cycling DA system, and in a set of 10-day forecasts.

2. Methods and Setup
We seek to learn state-dependent systematic error from analysis increments and apply corrections to improve the 
quality of the medium-range forecast and DA of the FV3-GFS using a resolution close to what is operationally 
used in the national weather service. To achieve this goal, we train two NN architectures to predict the analysis 
increments conditioned on the corresponding forecasts. The trained NNs are compared with several linear base-
lines in offline evaluation. Predicted corrections are then applied to forecasts in an online evaluation for both DA 
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and medium-range forecasts, in which the performance metric is the forecast error reduction. Both offline and 
online evaluations are performed in an independent testing period that is not included in the training process.

2.1. Model

We use the NOAA operational NWP model (FV3-GFS; UFS Community, 2020), which is comprised of a finite 
volume cubed sphere dynamical core (FV3; see e.g., Lin,  2004; Putman & Lin,  2007) and the NOAA GFS 
physics. We use the FV3-GFS at a reduced C192 resolution (≈50 km), which is coarsened from the operational 
resolution of C768 (≈13 km). The atmospheric column is discretized into 127 vertical levels in FV3-GFS.

2.2. Data

To simulate the DA process with reduced computational cost, we use a “replay” system to constrain the forecast 
using an externally provided full-field analysis instead of directly assimilating observations. Figure 1 shows a 
schematic of the replay system. Given a 6h forecast as background (blue arrow), an “update increment” (dashed 
line) is computed by the difference between the background forecast and a target analysis (red dot) at the anal-
ysis valid time (e.g., 06Z, 12Z, 18Z in the schematic). A forcing to the tendency equations (black arrow) is 
then obtained by dividing the update increment by 6 hr to match the update frequency. We obtain the replayed 
trajectory (yellow arrow) by restarting the model from the same initial condition of the forecast segment (3 hr 
before the valid time of the target analysis, e.g., 03Z, 09Z, 15Z) with the additional forcing term. We further 
define  the difference between the background and the replayed trajectory at the analysis valid time as the “anal-
ysis increment” (dotted line). This replay process is similar to the incremental analysis update (IAU; e.g., Bloom 
et al., 1996; Lei & Whitaker, 2016) method, which was developed to provide a better-balanced DA update by 
nudging forecasts over a fixed-size window (e.g., 6h). Bengtsson et al. (2019) showed that the replay methodol-
ogy allows for rapid generation of training data sets that reveal the nature of the model error even if the model is 
replayed to an external analysis.

The target for the replay system can be supplied from a cycled DA system using the same model (i.e., a 
“self-analysis”) or from an external source that uses a different model. The advantage of using the self-analysis 
is that it is available in real-time at the operational center, while the benefit of using the external analysis is that 
it may reduce correlations between the background and the analysis.

In this study, we use the operational IFS analysis from ECMWF, an external analysis, as the replay target. An 
earlier Cy41r2 version of the same model powered the latest European center reanalysis product (ERA5; Hersbach 
et al., 2020). We do not directly use the update increment to train the NNs because the resulting correction will 
likely replace the FV3-GFS error with the IFS error. Instead, we use the analysis increment (dotted line), the 
difference between the background forecast (yellow arrow) and the replayed trajectory (blue arrow) at the analysis 
valid time, as the training target. Because the update is applied through the forcing term, the replayed trajectory 
is not the same as directly replacing the states with the target analysis. This results in the differences between the 
update increment and the replayed analysis increment.

The replay and analysis increments are computed over a 15-month period from 20 November 2019 to 1 March 
2021. The first 10 days are discarded as a spin-up period, and the following 12 months are used for training and 
validation, while the remaining 3-month period is reserved for independent testing. To capture the annual and 
seasonal cycles in both the training and validation process, we withhold the initial 15 days of each season (every 
120-day period) of those 12 months for validation.

Figure 1. Schematic illustration of the replay system.
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To reduce the computational cost of the NN training, a data reduction is applied to the Gaussian grid of size 
768 × 384 corresponding to the original C192 resolution by either sampling grid points or by applying a smooth-
ing of the global data fields to a 64 × 32 Gaussian grid corresponding to T21 as illustrated in Figure 2. For the 
former approach, we sample from the original Gaussian grid every 12 grid points. This approach preserves finer 
details from the original resolution to some extent. Alternatively, the smoothing approach (spectral truncation) 
converts the data from the original Gaussian grid to spectral space, truncates the higher wave numbers to the T21 
resolution, and then converts it back to the corresponding Gaussian grid. Such a truncation approach assumes 
that the more easily diagnosed model errors are larger in scale and thus removes information not represented in 
T21 resolution.

The learning tasks in our study are different from most ML applications: the signal-to-noise ratio is unusually 
low because the analysis increments contain not only the model error information but also the inhomogeneity 
and irregularity of the observation network distribution in space and time, initial condition error of the forecasts, 
observational errors, etc. (see an indication in Figure 7, showing model error correction as filtered analysis incre-
ment). Therefore the goal is not to learn everything in the analysis increments but to extract only the information 
that is dependent on the input features. From this perspective, the smoothing approach is intended to remove some 
of these sources of noise.

2.3. Error Correction Methods

We devise two column-based NN error correction methods, modified after the column approach of BL20. The 
first method, which we refer to as the column NN hereafter, is trained using the sampled data set as it does not 
require any neighboring information for input. The main difference of our column NN from the BL20 is the addi-
tional input of some ancillary information about physical processes such as radiative fluxes, land-sea-ice mask, 
etc. Further, the longitude, the time of the day, and the day of the year information are transformed into sine and 
cosine forms. An obvious drawback of the column NN is that it does not incorporate information about the hori-
zontal structure of the background forecast as input to predict the analysis increment correction. This means that 
the column NN only sees the local input information and neglects the surrounding large-scale weather pattern 
(e.g., horizontal wind structures). To incorporate the spatial relationship in the error field, we also consider a 
CNN. CNN has had great success in computer vision applications; it scans through 2D fields with a moving 

Figure 2. Illustration of the two data reduction approaches from the original C192 resolution to an equivalent of T21: (a) 
sampling of every 12 grid points and (b) smoothing by spectral truncation. Note that both the reduced data sets are of the 
same size in the regular Gaussian grid space.
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window (also known as a kernel) assuming an invariant input-output rela-
tionship across the field. Thus for comparison, we also adopt a convolutional 
architecture in the horizontal directions for the same column-base NN trained 
against the smoothed data set. We refer to this approach as a low-res CNN 
because the convolution architecture is trained to learn the large-scale spatial 
structure in the truncated resolution and can only operate in that same reso-
lution. The low-res CNN mainly focuses on the errors in the large scales 
and includes the adjacent grid information when predicting the center grid 
column, using a kernel size larger than 1. The hidden layers and the output 
layer have the same horizontal domain size of 64 × 32 as the input.

Performance of the NN methods is assessed against three additional linear 
baseline methods similar to the method used by Crawford et al. (2020). We 
use the annual average, the seasonal (3-month) moving average, and the 
hourly seasonal moving average of the analysis increments. All three linear 
baselines are computed only from the training period for a fair comparison 
with the NN methods. The linear baseline methods represent tradeoffs. The 
hourly seasonal average baseline is algorithmically simpler than the NN 
methods. However, when implemented at the same resolution as the oper-
ational model, the volume required for storing a full year of global data for 
each variable can be prohibitive in an operational environment. The training 
of NNs can be viewed as a compression of this huge amount of data.

2.4. Training the NNs

2.4.1. Training Setup

The NNs are trained to predict separate corrections to each model state vari-
able within a vertical column: temperature, specific humidity, and u- and 
v-wind, which are prognostic variables of the atmospheric model. The train-
ing target is the collection of analysis increments obtained from the replay 
data set. Additional inputs to the NN include ancillary information such as 
time of the day, latitude, longitude, land-sea mask, radiative fluxes, etc. (see 
Table 1 for a complete list of all input features). To improve the interpolation 
of the temporal and spatial information, the time of the day, the day of the 
year, and longitude information are transformed into sine and cosine forms. 
The input and output data are normalized using the mean and standard devi-
ation calculated from the training data set. The stochastic gradient descent 
method is used to minimize a mean square error (MSE) loss function. The 
two NN methods share common hyperparameters (see Table 2 for the search 
space), which we optimize using the validation data set. To make the training 
more efficient and to prevent overfitting, we use an early stopping criterion 
that terminates the training if the validation score does not improve during 
the last 20 epochs. After training, we then perform independent testing on the 
NNs using both offline and online evaluation.

2.4.2. Offline Evaluation

The performance metric for offline evaluation is the explained percentage of the target analysis increment, a 
normalized MSE, defined as:

1 −
∑

(𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝)
2∕

∑

𝑦𝑦2
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

, (1)

where ytruth is the target analysis increment, and ypred is the predicted correction from the error correction methods. 
Having an explained percentage of 100% represents a perfect prediction, and having 0% means the correction 
method neither improves nor degrades the forecast. Negative values indicate that the correction has degraded the 
forecast skill.

ID Variable name

0–126 Temperature

127 log(surface pressure)

128–254 u-component wind

255–381 v-component wind

382–508 Specific humidity

509 Aerodynamic conductance

510 Canopy water evaporation gfs lsm

511 Direct evaporation from bare soil gfs lsm

512 Sublimation (evaporation from snow) gfs lsm

513 Snow phase change heat flux gfs lsm

514 Snow cover gfs lsm

515 Surface storm water runoff gfs lsm

516 Transpiration gfs lsm

517 Surface temperature

518 Surface temperature over ice

519 2 m specific humidity

520 Averaged potential evaporation rate

521 Surface roughness

522 Averaged albedo

523 Clear sky downward long wave flux

524 Clear sky downward short wave flux

525 Clear sky upward long wave flux

526 Clear sky upward long wave flux at toa

527 Clear sky upward short wave flux

528 Clear sky upward short wave flux at toa

529 Land-sea-ice mask

530 Latitude

531 sin(longitude)

532 cos(longitude)

533 sin(hour of the day)

534 sin(day of the year)

535 cos(hour of the day)

536 cos(day of the year)

Table 1 
Input Variables for Neural Network
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Performance of the NN methods is assessed by comparison to the three linear 
baselines, which are also computed both from the sampled and smoothed data 
sets (the same data sets used for NN training) to ensure a fair comparison 
with the NN methods. All error correction methods are evaluated using both 
reduced data sets in the full 3 months of the independent testing period for 
offline testing. For this offline evaluation, we include also a close replica of 
the BL20 setup (see Section 2.3 for its main differences from the column NN).

We use the analysis increment in the testing period as “truth” for offline 
evaluation so that the NNs can be evaluated without being integrated with the 
FV3-GFS model. The performance metric is aggregated over the whole globe 
and the entire testing period. It should be emphasized that the column NN 
and the low-res CNN are trained with the sampled and smoothed data sets, 
respectively, and hence the truth for evaluating the performance of the NNs 
is specific to each data set. For this reason, separate baselines are created for 
each data set for a fair comparison, and thus we do not compare the column 
NN and low-res CNN directly in the offline evaluation.

2.4.3. Online Evaluation

For the online evaluation, we examine the forecast error changes resulting from the corrections predicted by 
the NNs. To achieve this, the error correction needs to be integrated with the model workflow. This integration 
would normally require interfacing between the FORTRAN-based FV3-GFS and the typically Python-based ML 
libraries (e.g., Ott et al., 2020). To circumvent this software engineering challenge and develop a prototype, we 
use temporary intermediate files to exchange data between the FV3-GFS model and the trained NN. Using the 
FV3-GFS utility for ingestion of DA update files in the Gaussian grid space, all error corrections are applied 
directly to the forecast fields.

As the analysis increment embeds the information of errors that accumulates over 6h interval, it is pragmatic 
to make this file-based update at the end of each 6h forecast segment using the NN predicted corrections. This 
approach is not ideal for an operational forecast, as it would require stopping the model integration and initializ-
ing the ML package and the NNs every 6 hr.

Only the hourly seasonal moving average baseline is included in the online evaluation. Here the linear baseline 
is computed from the data set in the original model resolution (not the reduced data set used for NN training). 
The linear baseline and the column NN are straightforward to integrate into the forecast workflow. Although the 
column NN is trained from the sampled data set, it can be applied directly to each column in the original C192 
resolution since the data reduction simply extracts a subset from the original column data, and column NN does 
not require neighboring grid information. In contrast, additional spectral operations are required for using the 
low-res CNN for online correction in the original resolution (C192), because it is trained to operate at a lower 
resolution and depends on neighboring information. The learned spatial dependencies within the kernel are not 
applicable across different resolutions. Figure 3 illustrates the data processing pipeline for performing a low-res 
CNN correction online. Starting from the input, the background forecast is truncated to T21 spectral resolution. 
The resulting CNN-predicted corrections at T21 resolution are then upscaled (through zero padding of higher 
harmonics) to the original T192 truncation before ingesting them into the FV3-GFS forecast model.

To evaluate the online performance of the error correction methods, we examine two tasks essential for operational 
NWP: (a) sequential DA and (b) 10-day free forecasts. Their workflows are integrated with the error correction 
methods, as illustrated in Figure 4. We use 3D-Var as a relatively low-cost option for DA. The error correction 
is applied to the model forecast to correct the background fields before the assimilation of observations. Ideally, 
an improved background should also lead to improved analysis and subsequent forecasts. For the extended free 
forecast, we apply the error correction to a 6h forecast segment, from which we initiate the subsequent 6h segment 
until a full 10-day forecast is obtained. To examine the quality of the background produced by 3D-Var and also the 
10-day forecasts, the ECMWF IFS analysis data are used as “verifying truth” to compute forecast errors. This is 
appropriate because the quality of the analysis produced by 3D-Var and the 10-day forecasts at reduced resolution 
are significantly lower than the operational IFS analysis. Due to resource limitations, the DA experiment spans 

Column NN Low-res CNN

Data reduction Sampling Smoothing

Kernel sizes 1 1 3, 5

Minibatch size 8 8 1

Dropout probability 0.25, 0.5, 0.75

Learning rate 1e−5, 1e−4, 1e−3

Weight decay 0.01, 0.05, 0.25

Channel number/hidden neuron 2,048, 4,096, 8,192

Number of layers 3, 4, 5

Table 2 
Hyperparameter Search Space for Neural Network Training



Journal of Advances in Modeling Earth Systems

CHEN ET AL.

10.1029/2022MS003309

7 of 17

only the second month of the testing period (January 2021), and 10-day forecast experiments are run only once 
per day at 18Z of the same month (31 cases in total).

3. Results
3.1. Offline Performance

We first examine the offline performance of the linear baselines and the NN 
approaches in predicting the analysis increments in the testing period of the 
two reduced data sets. To understand how our NNs perform, we compare 
the skill of the annual average (blue), seasonal moving average (red), hourly 
seasonal moving average (yellow), a close replica of the setup of BL20 
(green), and our two NN approaches (orange) in Figure 5.

All NN approaches substantially outperform the linear baselines for all varia-
bles in both reduced data sets. The hourly seasonal average is generally the best 
performing linear baseline method and will be examined in online correction 
experiments in a later section. The low-res CNN (Figure 5b) and the column 
NN (Figure 5a) slightly outperform our replica of BL20 in the smoothed and 
sampled data sets respectively. The corrections in temperature and specific 
humidity appear to be more predictable than that in the winds. Comparing 
the performance of the linear baselines and the NNs for each variable reveals 
the predictability originating from the average, seasonal cycle, diurnal cycle, 
and state-dependent components. For instance, the hourly seasonal baseline 
method (yellow) reveals the periodic model error components, while the NNs 

Figure 3. Data processing pipeline for the online low-res convolutional neural network (CNN) correction. Starting from the 
forecast input in the original C192 Gaussian grid space, the data are down-sampled by spectral truncation to T21 Gaussian 
grid space. The CNN takes in forecast fields in T21 and predicts the corresponding correction fields in T21. The predicted 
error correction in T21 is then up-sampled by zero padding in spectral space.

Figure 4. Schematic illustration of the integration of the error corrections 
with the workflow of (a) sequential data assimilation and (b) concatenated 6h 
free forecasts.
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(green and orange), with both forecast and time information inputs, extract the state-dependent components 
in addition to the periodic components of the model errors. The difference between the performance of the 
two methods measures to some extent the predictability originating from the state-dependent error components 
learned by the NNs. For temperature, the annual average provides little skill for prediction, whereas the seasonal 
cycle and the diurnal cycle contribute some prediction skill, especially on large scales (shown in the smoothed 
data set). In this case, the prediction skill of the state-dependent component from the NNs provides an additional 
10% of the explained percentage to the hourly seasonal average. On the other hand, the annual average of the 
specific humidity itself provides a significant portion of predictability in the linear methods, and the NNs add 
another 30% to the performance metric on top of the linear baseline. The linear components are not predictive for 
the winds (especially for the u-wind), and the state-dependent components in the winds yield also roughly 10% 

Figure 5. Offline performance of linear baselines (annual average, seasonal moving average, hourly seasonal moving 
average), a close replica of the BL20 approach, and the neural network implemented in this study in predicting the analysis 
increment of temperature, specific humidity, u- and v-component wind in the testing period of the (a) sampled data set and (b) 
smoothed data set. Performance metric is the global explained percentage formulated in Equation 1.
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additional skill, similar to that for the temperature. When comparing across the two reduced data sets, the skill for 
the smoothed data set is generally higher owing to the smoothing effect, indicating that the large-scale features 
are more predictable. For this different nature in the data sets, we do not make a direct comparison between the 
performance of low-res CNN and column NN in the offline evaluation.

3.2. Sensitivity Analysis

To understand the error characteristics captured by the NNs, we examine the averaged gradients of the column 
NN subject to all training samples. The gradient 𝐴𝐴

𝜕𝜕�̂�𝐅

𝜕𝜕𝜕𝜕𝑖𝑖

|𝜕𝜕𝑖𝑖=𝑥𝑥𝑖𝑖𝑖𝑖𝑖 is one of many methods (Mamalakis et al., 2022) that 

allows one to examine how the output of the learned function 𝐴𝐴 �̂�𝐅 by NN depends on each of the input variables 
Xi at specific sample n. The gradients are further averaged over the training samples and visualized in Figure 6 
with the vertical and horizontal axes representing the input and output respectively. Note that each column of 
blocks in the figure represents a NN trained separately for predicting different variables. When training the NNs, 
the input and output data are normalized using the mean and standard deviation calculated from the training data 
set, so the values are non-dimensional and the sensitivities are realized at the forecast mean for each level. For 
simplicity, we refer to the normalized inputs as forecast anomalies as they are deviations from the mean value of 
each level. Positive (negative) sensitivity values indicate that the NN adds corrections of the same (reverse) sign 
as the anomalous forecast.

Figure 6 (top) shows the sensitivity of the NN predicted corrections to the temperature, specific humidity, u- and 
v-wind forecast inputs. The highest sensitivity appears to be on the diagonal blocks, meaning that the corrections 
are most sensitive to the forecasts of the same variable. The diagonal pattern of negative values across all varia-
bles indicates that the column NN reduces local forecast anomaly, except for the block of u-wind, which appears 
to only have gradients at some of the top levels (e.g., above 10 hPa). The immediate parallels of the diagonal with 
positive values show that the forecast anomalies at levels right above and below increase anomalies at the levels 
in between (e.g., below 150 hPa around the diagonal line of the temperature diagonal block). Around the diagonal 
line, there are several parallels with alternating signs that fade away as the vertical distance from the diagonal 
line increases (e.g., around the diagonals of the diagonal blocks of temperature, specific humidity, and v-wind), 
indicating the vertically localized influences of the forecast input features. Notice that the widths of the diagonal 
parallels are thinner in the stratosphere than in the troposphere (below 150 hPa).

The off-diagonal blocks represent the cross-variable sensitivities. The sensitivity of the specific humidity correc-
tion to the temperature forecast input is the largest off-diagonal block, followed by the sensitivity of temperature 
corrections to the tropospheric forecasts of specific humidity, showing that the model errors of the two variables 
are closely related to each other. The diagonals of these two off-diagonal blocks are positive, meaning that the 
anomaly of one variable will increase the anomaly of the other. The wind forecasts also provide some informa-
tion for predicting the temperature and specific humidity corrections, but not the other way around. The wind 
corrections do not depend on the forecast of other variables. We also note that the entire matrix of blocks is 
non-symmetric. For example, the prediction of humidity correction is more sensitive to the temperature forecast 
than the other way around.

On the right-lower (troposphere) quarter of the blocks corresponding to the prediction of temperature and specific 
humidity corrections, the horizontal patterns suggest a homogeneous response of a thick tropospheric layer to 
a single level of tropospheric forecasts. Except for the tropospheric homogeneous response, note that both the 
off-diagonal blocks and the off-diagonal elements of each block are mostly blank, suggesting that the sensitivities 
are sparse and are local in both vertical direction and variable space. Such a sparse pattern indicates that a NN that 
spans the entire atmospheric column may not be the most efficient implementation for predicting the correction, 
and a vertically localized NN may have improved performance.

Figure  6 (bottom) shows the sensitivity of the NN predicted corrections to the ancillary inputs. Against our 
intuition and the observed strong diurnal components in the temperature errors, the hour of the day information 
is the least important among all the ancillary input information. This insensitivity could result from the inclu-
sion of thermodynamical variables, such as radiative fluxes, that may provide a sufficient source of information 
representing the diurnal cycle. Many of the large responses are either only in the upper levels or only in the 
troposphere, which is consistent with the diagonal pattern of localization in Figure 6 (top). Only a few input 
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features (e.g., clear sky upward longwave flux at toa for temperature and latitude for v-wind) show approximately 
the same response magnitude to both above and below 150 hPa. Given that most of the selected input features 
are hydrological and thermodynamic variables, they are most helpful in predicting the temperature and specific 
humidity corrections, but not the wind corrections.

Figure 6. Sensitivity of predicted corrections to the (top) atmospheric and (bottom) ancillary (e.g., boundary condition) input variables measured by the averaged 
gradient of the column neural network that performs the best for each T, Q, U, and V variables.
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3.3. Online Testing Performance

Here we compare the hourly seasonal average (will be referred to as linear baseline hereafter), low-res CNN, and 
column NN applied as online forecast error corrections.

We point out that due to the different data reduction methods and the different NN architectures, the predicted 
corrections from the three methods appear quite differently in the original resolution for online testing. Figure 7 
compares in original resolution the prediction of surface temperature corrections from the three methods for a  case 
extracted from the 10-day forecast experiment. The original analysis increment is also included for reference.

The corrections from the three methods appear to be filtered versions of the analysis increment, retaining differ-
ent degrees of detail. This smoothing effect may be corresponding to the low signal-to-noise ratio as the analysis 
increment contains information other than the model error.

The linear baseline correction has granular spatial features with detailed information since it is simply a moving 
average of analysis increments centered on the same day of the year of the corresponding forecasts. On the 
other hand, the spectral data reduction of the low-res CNN smooths out all the fine features smaller than the 
resolved wave number. With data reduction using regular sampling, the column NN balances between the two and 
preserves many of the fine spatial features using the same amount of training data as the low-res CNN. All three 
methods agree well with one another on the larger scales. We note that the differences in fine features between 
the methods are smaller in higher model levels, and hypothesize that the primary source of these differences may 
originate from the inhomogeneity in surface conditions. At this point, it is unclear from Figure 7 whether the 
fine spatial features of the linear baseline and column NN are valid corrections or simply noise that should be 
removed. The online experiments in the following sections, which actually apply the corrections to the forecasts, 
will allow us to quantify the impact of these small-scale features and whether they actually reduce the forecast 
error.

3.3.1. Correcting Sequential 3D-Var

The improvement to the background as a function of model pressure level is shown in Figure 8. The gray shad-
ing area shows for reference the magnitude of the control RMSE (calculated against ECMWF analysis), where 
no corrections were applied to the forecasts. For temperature and specific humidity, the column NN correction 
generally outperforms the other two methods except at the surface boundary layer below 950 hPa, where the 

Figure 7. Comparison of the (a) original surface temperature analysis increment and the corresponding corrections [K] generated from the three error correction 
methods: (b) linear baseline (hourly seasonal moving average), (c) convolutional neural network trained on the smoothed data set, and (d) column neural network 
trained on the sampled data set.
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linear baseline provides the largest error reduction. In the mid to upper troposphere, all three methods provide no 
improvement or even slight degradation to the temperature. The humidity correction reduces the forecast error 
from the surface to the upper troposphere by around 10% compared to the control background. The column NN 
and the low-res CNN correct a huge portion of the background error at the top few levels. For u-wind, all correc-
tions fluctuate drastically between improvement and degradation in the upper levels and are nearly zero from the 
surface to the middle troposphere. The linear baseline provides only slight improvements in u-wind in the lower 
troposphere. When compared with the relatively skillful corrections in the offline evaluation, this poor online 
performance may indicate a generalization issue in predicting U-wind corrections. This issue could be associated 
with a simple overfitting problem, but it could also suggest a more complicated situation where there is other 
state-dependent information in the increments that is irrelevant to estimating the model error. It would require 
further analysis to understand the poor performance in predicting U-wind corrections. We will pursue this anal-
ysis in future work and would advise for now against including the NN predicted U-wind corrections (especially 
above tropopause) in relevant applications. The column NN outperforms the linear baseline above the middle 
troposphere for the v-wind, especially at the upper levels. Overall, the best performing method is the column 
NN. The linear baseline surprisingly provides the best correction in the boundary layer. This may be due to the 
strong periodic component of surface errors and the granular spatial features preserved by the linear baseline. In 
contrast, the low-res CNN in many cases performs the worst, perhaps due to the loss of detailed spatial informa-
tion. The column NN strikes a balance between preserving the fine spatial features and reducing the data size.

The standard deviations of the improvements by each method are also shown in Figure 8. We would like to point 
out that the surprisingly large improvement in the boundary layer temperature provided by the linear baseline 
is accompanied by a large spread between cases. This indicates the linear baseline correction has a rather high 
chance of degrading the boundary layer temperature forecast in some cases. In contrast, the spread in the same 

Figure 8. Averaged changes in RMSE in background forecasts for all cases as a function of model pressure level (vertical axis) by applying the error correction 
methods (Linear baseline: blue, Low-res convolutional neural network: yellow, and Column neural network: green) to the sequential 3D-Var experiment. The standard 
deviations of the RMSE changes of all cases for each method are shown as shading in the corresponding colors. Forecast improvements are shown as negative values 
(indicating error reduction). Changes in temperature, specific humidity, u-component wind, and v-component wind are shown respectively in columns from left to right. 
For reference, the light gray shading indicates the magnitude of the averaged RMSE of the control experiment, mirrored to the negative side of the x-axis for ease of 
comparison. Symmetric logarithmic scale beyond a certain threshold (0.001 for Q; 0.1 for T, U, and V) is used for the horizontal axis for accommodating large vertical 
variations in RMSE.
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area is smaller for the column NN correction even though its mean improvement is not as large as that from the 
linear baseline.

To further examine the latitudinal distribution of the improvements, we show the relative RMSE changes in 
the zonal mean cross-section in Figure 9. For the temperature error, the largest improvements of all methods in 
near-surface levels are found in the southern tropical to subtropical regions and the higher latitude regions for 
both hemispheres. The southern tropical and subtropical temperature improvements extend upward to approxi-
mately 700–850 hPa. The temperature improvement is quite uniform in the top levels, except that there are a few 
levels with degradation in the tropics for the column NN. The improvement of specific humidity centers at the 
equator and extends poleward to 30°. Its vertical extension goes from the surface to 950 hPa for the linear baseline 
and the low-res CNN methods, but all the way to 300 hPa for the column NN. Note that the column NN degrades 
the forecast in the polar regions for nearly the entire troposphere column. We ignore the relative error changes 
for specific humidity above 300 hPa owing to the trace amount of water vapor at such high altitudes, where small 
changes would appear to be significant. The u-wind corrections are sporadically distributed in the surface bound-
ary levels for linear baseline, in the top levels for the two NN methods, and in the stratosphere for all methods. 
For v-wind, the two NN methods both reduce the error uniformly in the top levels, and the column NN extends 
the improvement downward to the upper troposphere in the tropics. Note that there is a strong improvement from 

Figure 9. Zonal mean cross-section of background relative RMSE changes [%] by applying the error correction methods (Linear baseline: top, Low-res convolutional 
neural network: middle, and Column neural network: bottom) to the sequential 3D-Var experiment. Changes in temperature, specific humidity, u-component wind, and 
v-component wind are shown respectively in columns from left to right. Forecast error reductions are shown as negative values (blue). The specific humidity levels 
above 300 hPa are shaded owing to the trace amount of water vapor.
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the linear baseline in the southern polar region in the surface boundary levels for both u- and v-winds that are 
not captured by the NN methods. Overall, the column NN provides improvements to more areas, including the 
tropical troposphere, polar boundary layers for temperature and humidity, and upper levels for all variables, while 
the linear baseline captures the periodic error components and provides better surface boundary corrections.

In Figure 9, we observe a significant response in background improvement in the lower troposphere in the trop-
ical/subtropical regions, especially in temperature and specific humidity fields. This motivates the examination 
of the temporally and zonally averaged corrections to each variable in the troposphere (Figure 10). Note that the 
overall distribution of the positive and negative correction is similar across different error correction methods, 
especially for the temperature and humidity fields. For temperature, all three methods show a negative correction 
from surface to 700 hPa and a positive correction above 700 hPa in the tropics. The specific humidity correction 
appears to have a similar pattern to the temperature corrections but with the sign reversed, which is consistent 
with a previous study (Figures 13a and 13c in Bengtsson et al., 2019). These features indicate the model has 
a consistently warm and dry bias in the lower boundary layer while having a cold and wet bias in the upper 
troposphere. The wind corrections are rather complicated, but the V-wind correction shows the error correction 
methods enhance a convergent flow below 950 hPa and a divergent flow between 150 and 400 hPa at the equator. 
These features in the averaged temperature, humidity, and V-wind corrections indicate a Hadley-like systematic 
error in the model. We also point out that the averaged linear baseline correction is equivalent to an average of 
increments, which corresponds to Figure 15 of Crawford et al. (2020), in which the specific humidity correction 
appears qualitatively similar to that in Figure 10.

3.3.2. Ten-Day Forecast Correction

Figure 11 compares the error changes caused by error correction methods as a function of model levels and fore-
cast lead times for all variables. Overall, the NN methods provide improvements that increase with forecast lead 
time for most levels, except for one of the top levels for temperature (0.1 hPa) and another for u-wind (10 hPa). The 
column NN performs slightly better than the low-res CNN with a similar pattern. The linear baseline corrections 
are mixed with both improvement and degradation in the forecasts at different lead times. Some degraded levels 
start with a slight increase of error, but the error grows with the increased lead times, such as the layers around 
10 hPa for temperature, u- and v-wind. Another interesting type of forecast degradation emerges at later forecast 
lead times from the earlier improvements, such as the temperature forecasts at 300–950 hPa and the specific 
humidity forecasts from 700 hPa to the surface. This interesting sign change takes place somewhere between 2 
and 6 days and is an indication of the over-correction also observed by Crawford et al. (2020). The corrections 
to temperature and specific humidity in the lower troposphere (below 950 hPa) are the only few regions where 

Figure 10. Zonal mean cross section of tropospheric corrections to temperature, specific humidity, U- and V- winds (left to right) from the linear baseline (top), 
low-res convolutional neural network (middle), and column neural network (bottom) methods. The corrections are averaged over the 3D-Var experimental period. 
Positive (red)/Negative (blue) value indicates that the correction increases/decreases forecast value.
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Figure 11. Forecast RMSE change averaged over 30 cases as a function of model pressure level (vertical axis) and forecast lead time (horizontal axis) by consecutively 
applying the error correcting methods (linear baseline: left, low-res convolutional neural network: center, Column neural network: right) to 10-day forecasts for every 6h 
segments. Changes in temperature, specific humidity, u-component wind, and v-component wind are shown respectively in rows from top to bottom. Blue represents the 
forecast improvement, whereas red indicates degradation.
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the linear baseline outperforms the NN methods. However, the humidity corrections go from error reduction to 
error increase after 4 days. We observe no change of sign for the NN methods, indicating that the corrections are 
state-dependent and less likely to overcorrect the forecasts. The levels of the largest improvement at the early lead 
times are consistent with the 3D-Var results, except for the u-winds where the improvements were not obvious in 
the previous experiment but quite large in the 10-day forecast results. We suspect that the improvement in u-wind 
may come from the improvement in v-wind owing to their high correlation. This guess may be supported by the 
similarity between the u- and v-wind error changes in the figure. At later lead times, there are improved levels that 
appear to be an extension of the nearby levels that are largely improved from earlier lead times.

4. Conclusions
In this study, a NN-based online correction is applied to the NOAA FV3-GFS model with a relatively 
close-to-operation configuration for demonstrating, for the first time, the potential of reducing systematic model 
errors in NWP tasks, including cycling DA and medium-range forecasts.

We systematically compare the linear baseline similar to Crawford et al. (2020), a state-dependent 1D column 
NN similar to BL20, and a more complicated convolutional NN, which is an extension of the 1D column NN. 
Our study finds that the 1D column NN is capable of reconstructing the global variability of the systematic 
model error as revealed in our linear baseline (Figure 10). Similar to prior work (Crawford et al., 2020), this 
global variability has a Hadley-like structure and may correspond to the systematic error in tropical convec-
tion activities. When we compare linear baseline to state-dependent correction generated with the NN, we find 
state-dependent corrections considerably improve error predictions in all of our tests, including offline testing, 
cycling DA, and 10-day forecasts. We also find that state-dependent corrections provided by the NN avoid the 
problem of over-correction of bias in the extended range forecasts by the linear baseline (as was documented by 
Crawford et al. (2020) and replicated in this study). We attribute this to the capability of the NN on predicting the 
corrections conditioned to the forecast states. Comparisons between the 1D column NN corrections (originally 
introduced by BL20) and the more sophisticated convolution network (introduced in this paper) showed that the 
inclusion of horizontal information has a very limited positive impact in the offline tests but had a neutral impact 
on tests with cycling DA and 10-day forecasts. We infer that the nature of the short-term model error (as revealed 
in the analysis increments) is dominated by vertical processes such as moist physics, vertical mixing, cloud 
microphysics, radiation, and gravity wave drag.

We examine the sensitivity of the NN-predicted corrections to the input features and reveal a highly localized 
dependency structure in the vertical direction and in the variable space between the two. The temperature and 
specific humidity corrections are found to be highly dependent on each other's forecasts, and the corrections 
mostly depend on the forecasts in nearby vertical levels. Such a vertical localization of dependency is the strong-
est in the upper atmosphere, while both temperature and specific humidity in the troposphere show a rather 
homogeneous response of a thick layer to forecasts at certain levels. The sensitivity to the ancillary information 
reveals that the radiative fluxes may be a more generalizable input feature than time information indicated by the 
strong periodic components revealed by the linear baselines while the NNs are not particularly sensitive to the 
time of the day and day of the year input features.

Our sensitivity analysis points to a future direction for improving the NN structure. The sparse and localized 
features suggest multiple highly localized NN for different vertical levels may provide a more accurate and effi-
cient prediction of the error corrections. Our results in the cycling DA and 10-day forecast cycles also encourage 
us to implement an online evaluator of the NN in the FV3-GFS model to avoid the need to start and stop the 
model to produce background forecast files for ingesting in stand-alone NN evaluators. Another promising appli-
cation to extend this work is to address model biases in the context of the historic reanalysis. Specifically, we 
showed that it is possible to detect, learn, and correct model biases with a modern observing system. However, as 
reanalyses are extended backward in time the observational system becomes sparse and insufficient to correct for 
model biases. This was manifested in the previous reanalysis as discontinuities that correspond to the introduc-
tion of new observing systems. If one can apply systematic error corrections learned from the modern system to 
historic periods, one might be able to avoid these artificial discontinuities that complicate the use of the reanalysis 
products for studies of long-term climate trends. Lastly, the analysis increments may not be the only source for 
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learning model errors. Observation innovations from certain trustworthy observations can also provide useful 
information about systematic model errors (e.g., Laloyaux et al., 2022).

Data Availability Statement
The source code for the FV3-GFS model can be found at https://github.com/ufs-community/ufs-weath-
er-model. The data assimilation and replay workflows are available at https://github.com/jswhit/da_scripts and 
https://github.com/jswhit/replay_scripts. The data reduction and training scripts are available at https://github.
com/NOAA-PSL/model_error_correction. The data was processed using the climate data operators (CDO; 
Schulzweida, 2022).

References
Bengtsson, L., Dias, J., Gehne, M., Bechtold, P., Whitaker, J., Bao, J.-W., et al. (2019). Convectively coupled equatorial wave simulations using 

the ECMWF IFS and the NOAA GFS cumulus convection schemes in the NOAA GFS model. Monthly Weather Review, 147(11), 4005–4025. 
https://doi.org/10.1175/MWR-D-19-0195.1

Bloom, S. C., Takacs, L. L., Silva, A. M. d., & Ledvina, D. (1996). Data assimilation using incremental analysis updates. Monthly Weather 
Review, 124(6), 1256–1271. https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2

Bonavita, M., & Laloyaux, P. (2020). Machine learning for model error inference and correction. Journal of Advances in Modeling Earth Systems, 
12(12), e2020MS002232. https://doi.org/10.1029/2020MS002232

Brenowitz, N. D., & Bretherton, C. S. (2018). Prognostic validation of a neural network unified physics parameterization. Geophysical Research 
Letters, 45(12), 6289–6298. https://doi.org/10.1029/2018GL078510

Brenowitz, N. D., & Bretherton, C. S. (2019). Spatially extended tests of a neural network parametrization trained by coarse-graining. Journal of 
Advances in Modeling Earth Systems, 11(8), 2728–2744. https://doi.org/10.1029/2019MS001711

Bretherton, C. S., Henn, B., Kwa, A., Brenowitz, N. D., Watt-Meyer, O., McGibbon, J., et  al. (2022). Correcting coarse-grid weather and 
climate models by machine learning from global storm-resolving simulations. Journal of Advances in Modeling Earth Systems, 14(2), 
e2021MS002794. https://doi.org/10.1029/2021MS002794

Crawford, W., Frolov, S., McLay, J., Reynolds, C. A., Barton, N., Ruston, B., & Bishop, C. H. (2020). Using analysis corrections to address model 
error in atmospheric forecasts. Monthly Weather Review, 148(9), 3729–3745. https://doi.org/10.1175/MWR-D-20-0008.1

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal 
of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Laloyaux, P., Kurth, T., Dueben, P. D., & Hall, D. (2022). Deep learning to estimate model biases in an operational NWP assimilation system. 
Journal of Advances in Modeling Earth Systems, 14(6), e2022MS003016. https://doi.org/10.1029/2022MS003016

Lei, L., & Whitaker, J. S. (2016). A four-dimensional incremental analysis update for the ensemble Kalman filter. Monthly Weather Review, 
144(7), 2605–2621. https://doi.org/10.1175/MWR-D-15-0246.1

Lin, S.-J. (2004). A “vertically Lagrangian” finite-volume dynamical core for global models. Monthly Weather Review, 132(10), 2293–2307. 
https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2

Mamalakis, A., Ebert-Uphoff, I., & Barnes, E. A. (2022). Neural network attribution methods for problems in geoscience: A novel synthetic 
benchmark dataset. Environmental Data Science, 1, e8. https://doi.org/10.1017/eds.2022.7

Ott, J., Pritchard, M., Best, N., Linstead, E., Curcic, M., & Baldi, P. (2020). A Fortran-Keras deep learning bridge for scientific computing. 
arXiv:2004.10652 [cs]. Retrieved from http://arxiv.org/abs/2004.10652

Putman, W. M., & Lin, S.-J. (2007). Finite-volume transport on various cubed-sphere grids. Journal of Computational Physics, 227(1), 55–78. 
https://doi.org/10.1016/j.jcp.2007.07.022

Schulzweida, U. (2022). CDO User Guide. Zenodo.https://doi.org/10.5281/ZENODO.7112925
UFS Community. (2020). UFS weather model [Dataset]. Zenodo. Retrieved from https://zenodo.org/record/4460292
Watt-Meyer, O., Brenowitz, N. D., Clark, S. K., Henn, B., Kwa, A., McGibbon, J., et al. (2021). Correcting weather and climate models by machine 

learning nudged historical simulations. Geophysical Research Letters, 48(15), e2021GL092555. https://doi.org/10.1029/2021GL092555

Acknowledgments
T.-C. Chen is supported by the 
National Oceanographic and Atmos-
pheric Administration (NOAA) 
Cooperative Agreement with CIRES, 
NA17OAR4320101. S.G. Penny acknowl-
edges support from NOAA Grants 
NA20OAR4600277, NA19NES4320002, 
and NA18NWS4680048, and the 
Office of Naval Research (ONR) Grants 
N00014-19-1-2522 and N00014-20-1-
2580. R. P was supported by the National 
Science Foundation via the NSF STC 
Learning the Earth with Artificial Intel-
ligence and Physics (LEAP), NSF Award 
2019625.

https://github.com/ufs-community/ufs-weather-model
https://github.com/ufs-community/ufs-weather-model
https://github.com/jswhit/da_scripts
https://github.com/jswhit/replay_scripts
https://github.com/NOAA-PSL/model_error_correction
https://github.com/NOAA-PSL/model_error_correction
https://doi.org/10.1175/MWR-D-19-0195.1
https://doi.org/10.1175/1520-0493(1996)124%3C1256:DAUIAU%3E2.0.CO;2
https://doi.org/10.1029/2020MS002232
https://doi.org/10.1029/2018GL078510
https://doi.org/10.1029/2019MS001711
https://doi.org/10.1029/2021MS002794
https://doi.org/10.1175/MWR-D-20-0008.1
https://doi.org/10.1002/qj.3803
https://doi.org/10.1029/2022MS003016
https://doi.org/10.1175/MWR-D-15-0246.1
https://doi.org/10.1175/1520-0493(2004)132%3C2293:AVLFDC%3E2.0.CO;2
https://doi.org/10.1017/eds.2022.7
http://arxiv.org/abs/2004.10652
https://doi.org/10.1016/j.jcp.2007.07.022
https://doi.org/10.5281/ZENODO.7112925
https://zenodo.org/record/4460292
https://doi.org/10.1029/2021GL092555

	Correcting Systematic and State-Dependent Errors in the NOAA FV3-GFS Using Neural Networks
	Abstract
	Plain Language Summary
	1. Introduction
	2. Methods and Setup
	2.1. Model
	2.2. Data
	2.3. Error Correction Methods
	2.4. Training the NNs
	2.4.1. Training Setup
	2.4.2. Offline Evaluation
	2.4.3. Online Evaluation


	3. Results
	3.1. Offline Performance
	3.2. Sensitivity Analysis
	3.3. Online Testing Performance
	3.3.1. Correcting Sequential 3D-Var
	3.3.2. 
            Ten-Day Forecast Correction


	4. Conclusions
	Data Availability Statement
	References


